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Introduction 

In this paper we give the constructive version (in the topos-theoretic sense) of the 
spectral decomposition theorem for real symmetric (resp. hermitian) matrices. We 
interpret the theorem in spatial topoi. The interpretation gives us the following 
results: 

(1) I f a real symmetric matrix depends continuously on parameters, then its eigen- 
values depend continuously on the same parameters. 

(2) We get a normal form for real symmetric matrices depending continuously 
(resp. differentiably) on parameters. 

(3) We get a versal deformation of any real symmetric matrix, i.e. a deformation 
that induces all other deformations up to similarity. 

Classically Arnold gave a method in [1] to compute minimal versal deformations 
of matrices, i.e. deformations which involve the minimal number of parameters. 
With the same techniques we calculate here the minimal versal deformation of a real 
symmetric matrix. We notice that it is exactly the deformation obtained by inter- 
preting our spectral decomposition theorem in topoi. This gives us that the spectral 
decomposition theorem we got in topoi is the best we can hope to get constructively. 

It was in the author's thesis that the connection was first developped between con- 
structive arguments in a topos and arguments involving parameters. There [3] she 
proved a one variable division theorem which has an interpretation in Sh(C "-1) as 
the classical n-variable division theorem. Fourman worked in the same direction: He 
proved that, in a topos, any complex separable polynomial splits into linear factors. 
We use here his result, which can be interpreted as: If  the coefficients of  a complex 
separable polynomial depend continuously (resp. holomorphically) on parameters, 
then its roots depend continuously (resp. holomorphically) on the same parameters. 

The paper is divided into three parts. In the first section we sketch the proof of 
the spectral decomposition theorem. We postpone the proof of the technical lemmas 
until the last section. We interpret the theorem in the second section. We also com- 
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pute the minimal versal deformation of  a real symmetric matrix by classical methods 
and we compare it with our results. Finally in the last section we give the proof  of 
the technical lemmas. We also give a proof  of  Fourman 's  theorem mentioned above. 

Remark. Everything that is done here for real symmetric matrices works for com- 
plex hermitian matrices. In the proofs, orthogonal matrices are replaced by unitary 
matrices. Since both theorems and proofs are similar in all points we do not mention 
the hermitian case more explicitly. 

1. Spectral decomposition theorem in a topos: 

It is known that if a real symmetric matrix depends continuously on parameters,  
then its eigenvalues depend continuously on the same parameters, but the following 
example shows that continuous eigenvectors do not necessarily exist. 

Example. We consider Sh(~2), the topos of sheaves o v e r  [R 2. In this topos the ob- 
ject of Dedekind real numbers is the sheaf of  germs of  continuous real-valued func- 
tions on [R 2. Let 

A = 2x " 

[AI -  A [ = 22 - 32x + 2x 2 - y2 = 0 iff  A = (3x + ]/x 2 + 4y2)/2. In any neighborhood of  

(0, 0) there are no eigenvectors depending continuously on x and y. 

Moreover, in this example the eigenvalues are not differentiable. Thus there is no 
hope for a generalization of the theorem below to other 'real number objects' ,  such 
as the sheaf of  germs of  C O* real-valued functions on ll~ 2 (see [4] for the notion of 
'real number object ') .  

We first prove that in a topos eigenvalues exist. 

Theorem 1. Le t  ~ be a topos with a natural number  object  and ~ denote the object 

o f  Dedek ind  real numbers  (cf. [2]). A n y  real symmetr ic  matrix  has n real eigen- 
values, i.e. its characteristic po lynomial  splits into linear factors.  

Proof.  Let A = (aij) be a real symmetric n x n matrix. The eigenvalues of  A are ob- 
tained as the extrema of the quadratic form associated with A : Q(x)= x A x  t, x • ~.n. 

Let 
Ak = min m a x  xAx t. 

{(x, ..... x,)[x,.xjffi6,j} {x=,,x, +... +,,x,I txl = q 

The following lemmas prove the existence of 2k. 

Lemma 1. Given or thonormal  vectors x~,. . . ,  Xk, the set 
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sg- I (XI , . . . ,Xk)  = { x : a l X l + ' " + a k x k [  Ix[:  1} 

is totally bounded, i.e., V t > 0  ~y l , . . . , YmESk- l ( x l , . . . ,Xk )  
sk - l (X j , . . . ,Xk)  ~tiBx~B(Yi,  e ). 

such that Vx ~ 

Lemma 2. Sk = {(Xl, ... ,Xk)[Xi'Xj =&ij} is totally bounded. 

Lemma 3. The function maXx~sk-~<x, ..... x,> xAxt is uniformly continuous on Sk. 

We must now show that the 2k'S are roots of the polynomial 1 2 I - A [ .  Andr6 
Joyal gave us the following idea: the 2k's depend continuously on A. It is therefore 
enough to show that t 2 k l - A ] =  0 for rational matrices A. These matrices can be 
diagonalized by the usual method, i.e. we use the fact that the real algebraic 
numbers form a totally ordered field. The roots of the characteristic polynomial are 
then precisely the extrema of the associated quadratic form. The details of this proof 
are given in the following lemmas: 

Lemma 4. The 2 k's depend continuously on A. 

Lemma 5. Any  polynom&l in ©[x] splits into linear factors in C[x]. 

Lemma 6. The algebraic numbers are a geometric subfield o f  C, i.e. a subring in 
which Vx (x= 0 or x is invertible). 

In particular the algebraic real numbers form a totally ordered geometric subfield 
o f  ~, i.e., Vx (x=O or x > 0  or x<0) .  

Lemma 7. Any  rational symmetric matrix A & diagonalizable, i.e. A has n ortho- 
normal eigenvectors. 

A=S(o' 
S orthogonal. Moreover, i f p l  <-'" <-Pn, then l.tk=}t k, where 2k was defined as the 
kth extremum o f  Q(x )=xAx  t. 

The results on algebraic numbers (Lemmas 5 and 6) are from Andr6 Joyal. The 
proofs are sketched in Section 3. 

We now give the tools for our spectral decomposition theorem: these tools are 
classical. We omit the proofs when the classical proofs are valid in our context. 

Proposition 1 (Cayley-Hamilt0n theorem). Let A be an n × n (real or complex) 
matrix, and p(2) = [ 2 I - A  I be its characteristic polynomial. Then p(A) =0. 

Proposition 2. Let A be a real n × n matrix and S an orthogonal matrix (SS t = I). 
Then A is symmetric i f f  S-1AS is symmetric. 
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Proposition 3. Let A be a real symmetric n × n matrix, and p(2) be its char- 
acteristic polynomial. I f  p(A)=pl(X)p2(2), with ( p l , p 2 ) = l ,  i.e. ~qi (2) ,  q2(A) 
such that Plql +P2q2 = 1, then IR n =Ann(p l )@Ann(p2) ,  where Ann(pi) = 
{X E [R n I P i (A) (x )  = 0}.  Moreover Ann(p1) is orthogonal to Ann(p2). 

Proof. We just prove the last fact. Let x¢Ann(p~) .  Then 

x=plq l (A) (x )  + p2q2(A)(x) =p2q2(A)(x). 

Let y e Ann(p2). Then 

(x, y) = ( P2 q2 (A )(x), y) = (x, p2 q2 (A )( y) ) = O. 

Definition. ( f l , . . - , fn)  is a basis of ~n iff 
(1) f l ,  .--,fn generate [R n, i.e., V x e  ~n i~a 1, ...,an such that x = a l f  1 + .. .  + a n f  n. 

(2) f l ,  . . . , fn are linearly independant, i.e., Val , . . . , an¢  [R 2tiai~O = Y. ajfj:gO. 

Theorem 2 (Spectral decomposition theorem for symmetric matrices). Let  A be a 
real symmetric matrix. Then Ve>O there exists an orthonormal basis f l ,  ... ,fn, in 
which A has the form:  

where each block A i is o f  order hi. nl is such that [21 --2i1 <e fo r  i < n  I and ;ti#:21 
f o r  i> n l ;  n2 is such that [2nl+l-An~+il<e f o r  l < i < n 2 ,  and 2n~+i~An~+! fo r  
i>n2, etc. (21-<22 -<''" -<An are the eigenvalues o f  A . )  

Proof. 
I2l-A I --(2- (2-  An), 
H 

A (121-2i1 <evA1 ~A/). 
i = l  

A. 1 < g 2 <  ... -<2n, 

We finally have: 

121-~.il<c, vi-<nl/x2i=/=2~, i > n  1. 

We take p l= (2 -A1) - . - (A-An~)  and P2=I-L>, , (2-2/ ) .  Let Res(pl,P2) be the 
resultant of the two polynomials p~, P2 (cf. [5]). Res(pl,  P2) is invertible (classical 
proof).  By the classical method we find ql,q2 such that p l q l + p 2 q 2 = l .  Let 
IV/= Ann(p/). By Proposition 3, R n= WIG W2 and W1.1_ W2. We need to find a 
basis for W1 and W2. Let el, . . . ,  en be the standard basis of  •n. We consider the 
vectors piqi(A)(ej). These 2n vectors generate ~n, since x=plq l (A) (x )  +p2q2(A)(x). 
We call them 3"1, ... .  f2n. fy= ~, bijei. B=(bij) is a n ×2n matrix. W e  also have 
ej = Y. cij~. C = (cij) is a 2n x n mat r ix .  
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B C = I . .  Det(BC)= ]~ ]Bi,...i.[ ]C it "i"l = 1, 
i I - . .  i n 

where Bi,... i, (resp. C i '  i,) is the n × n submatrix of B (resp. C) obtained by tak- 
ing the columns (resp. the rows) i l , . . . , i , . .Til , . . . , i ,]Bi, . . . i ,[:/:O. Then f i , , . . . , f / ,  
generate ~n. Moreover fis e W1 or ~ e W2. We can suppose ~s e WI for j _  k, and 
f/j ~ W2 for j > k. This basis can be orthogonalized by the Gram-Schmidt  process 
and we stay inside the Wi's. 

We now have to prove that k =  nl. If A is rational it follows from the fact that 
A is diagonalizable. We show that the W/'s depend continuously on A and that 
dimension is preserved. (One can remark that the argument used above can be 
repeated to prove that all basis have the same number of elements, so dimension 
is well defined). The rest of the proof is given in the following two lemmas. 

Lemma 8. The W i "s depend continuously on A. By this we mean the following: Let 
! 

A = (aij) and A '=  (aij). 

[ ) t I - A [ = p ( ) O = ( A - ) ~ l ) . . . O t - ) t n ) = p l p 2  , 21 </].2_~< " -  ~<,~.n, 

] A I - A ' l = p ' ( 2 ) = ( 2 - 2 ' l ) . . . ( 2 - 2 ' , ) = p ~ p  ~, 2~<2~__-.._<2', 

where Pl = (2 - 21) "'- (2 - 2n,) (same for  p~). 
Let W/= Ann(p/) and W/= Ann(Pi'). Then Ve > 0 fro > 0 such that 

E laij-abl<o = (vxew,  Ixl=l = ~/x'e w,' I x - x ' l < c )  
l , J  

and 
Vx' W/Ix'l=1 = Ix'-xl< . 

Proof. Let e > 0  and x ' e  W1. pl(A)(x)=O iff x=p2q2(A)(x) iff  qlPl(A)(x)=O. 
3 6 > 0  such that [ A - A ' [ < d  implies (p~ ,p2 )= l  and ]q lp l (A) -q lp~(A ' ) [<e  
(since the 2i's depend continuously on A by Lemma 4). Then, if we suppose 

Ix ' l=1,  

[qlpl(A)(x') -- qlP((A')(x')  [ = [qlPl (A)(x')[ < e. 

But x '= xl + x2 with xi e Wi and Xz = ql p~ (A )(x'). So [x ' -  x~ l =]x2 l<e .  

Lemma 9. I f  Wi and Wi' are defined as above and e is sufficiently small, then Wi 
and Wi" have the same dimension. 

Proof.  Let W~ be generated by orthonormal vectors e l , . . . ,  ek. Let ei'~ Wi' be given 
by Lemma 8 such that l e l - e i l  < e. We show that the ef's are linearly independant. 
This shows dim Wl '<dim W 1. We suppose ne< 1. Let x 1, . . . , x  k be given with one 
xj:/:O. Without loss of generality we can suppose Ixjl >nt ,  and Vi Ixi] < 1. 

[ E xie;[ ~1 E x ie i l -  [ E xi(e,-ei)[. 
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~_, x i e  i has n o r m  

Then [ ~ xiell > ne - ne > 0. So 

I E xi(e/-ei)l~ E Ixil [ej-eil<ne. 

E xie[* O. 

Remark. We specialize here to the topos Sh(M), where M is a C ~* manifold. In this 
topos we have several 'objects of  real numbers' ,  i.e., suitable objects for real 
analysis (cf. [4] for the notion of real number object), of which we mention two: 

[R M, the sheaf of  germs of continuous real-valued functions on M (the Dedekind 
real number object). 

lRo,, the sheaf of germs of C ~* real-valued functions. The example at the beginn- 
ing of Section 1 shows that Theorem 1 is not valid if we replace ~M by ~ .  
However Theorem 2 is valid when 'real numbers'  mean elements of [R~. It is 
enough to notice that if p ( x ) e ~ [ x ]  splits as P=P~P2, with p iE[RM[X ] and 

(p l ,P2)= 1, then pl ,P2 E [R~[x]. 

2. Symmetric real matrices depending on parameters 

Here we interpret Theorems 1 and 2 of Section 1. Theorem 1 is interpreted as 
Theorem l'. 

Theorem 1'. I f  a real symmetric matrix depends continuously on parameters, then 
its eigenvalues depend continuously on the same parameters. 

Proof.  A matrix depending continuously on parameters a l ,  ..., am can be thought 
of  as a matrix in Sh(II~m), with coefficients in the Dedekind real numbers. Then the 
eigenvalues are Dedekind real numbers in Sh(lRm), i.e. depend continuously on the 

~i 'S.  
Theorem 2 interprets as Theorem 2'. 

Theorem 2'. Let A(f l)  be a real symmetric matrix depending continuously (resp. dif- 
ferentiably) on parameters ill, . . . ,  Pm, and let A(O)=A0 be similar to: 

I.rl ".. 

Ar 
with )t i ~ 2j f o r  i ~ j .  

Then there exists a matrix C(fl) depending continuously (resp. differentiably) on the 
fli's, and continuous (resp. differentiable) ajk(fl), l<_j, k<-ni, defined in a 
neighborhood o f  O, such that C(fl)-IA(fl)C(fl) =A'o + B with 
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Bi is symmetric: 

Moreover, 
C(O) = I. 

I il 0~!1 "'" ~)l!n i 
B i = : 

~ ~ini i t~niniA 
i f  A o = A  ~, i.e. A o is already in Jordan normal  fo rm,  we can take 

Proof. We consider A(fl) as a real matrix in Sh(~m), and we take e < m i n ( 2 i - 2 j ) .  

We apply Theorem 2 to the matrix A. The columns of  the matrix C(fl) are the 

orthonormal vectors f l ,  ... , fn.  Each Aj  can be written as 2j I  6 ÷Bj ,  for a Bj. Now 
suppose A0 =A~. We replace C(fl) by C(fl)C(O) -1. Since C(0) has the same diagonal 

t 

block shape as A 0, 

(C(O)C(fl) -l )A(fl)(C(fl)C(O) -l ) = A~ + B', 

where B' has the same structure as B. 

We now introduce the language of deformations in the present context. The 

definition of versal deformation was first given by Douady. It means a deformation 

that induces all possible deformations. In the present context, since we want defor- 

mation up to similarity, it takes the following form given by Arnold: 

Definition (Arnold). A(a)  is a deformation of A0 iff A(0 )=A 0. A(a)  is versal iff 
for any deformation B(fl) of  Ao, there exists a C ~ map tp from a neighborhood of 

0 in the parameter space of B(fl) to the parameter space of  A(a),  and a deformation 

C(fl) of I , ,  defined on the same neighborhood such that ~p(0)=0 and B(/~)= 

C(fl)A(tp(fl))C -l  (fl), with C(fl) orthogonal. 

In terms of versal deformations our Theorem 2' can be reformulated as: 

Theorem 2". Let  

A0 = 

We define 

(B i symmetric).  

i ~Ll~n' ". ,~rlnr 1 
with 2i #: 2j f o r  i :#j. 

B 1 O'11  " ' "  lni 
A (a) = Ao + "'. where Bi = " " 

Br ~_Ct~n i [9[iiniJ 
Then A(a)  is a versal deformation o f  Ao. 
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We now compute the deformation of a real symmetric matrix with classical 
methods and compare with Theorem 2". In particular we want to know what is the 
minimal number of parameters in a versal deformation of a real symmetric matrix. 
The following lemma is well known and gives the technique to find minimal versal 
deformations (cf. [1]). 

Lemma. A(a) is versal i f f  A is transversal to Orb(Ao), where Orb(Ao)= 
{ CAoC-I I c c t =  I}. So the minimal number o f  parameters is the codimension o f  
Orb(Ao). 

In the context of real symmetric matrices, let S(n) be the set of real symmetric 
matrices, O(n) the orthogonal group. We have 

y : O(n)~S(n): C ~  CAo C-l. 

The tangent map at the identity is y*: T10(n)-', TAoS(n). T10(n) is the set of anti- 
symmetric matrices: we denote it by A(n). 

y*:A(n)~S(n): C~[GAo]  =CAo-AoC.  

The image of Y is Orb(A0) and the tangent plane to Orb(A0) at A0 is the set of 
[GA01, CeA(n) .  We compute this set when A 0 is a diagonal matrix 

Let 

Then 

Ao:I  r rl" 
C =  

• . .  C 1 r I 

• "" C r r J ' I  
C~A(n).  

[GAol = I I .ll 

~_Drl 
1 

"" Drr J 

where DO = (Aj - l].i)Cij. 

In order to take A(a) transversal to orb(A0) and minimal we take: 

Bl a~l 
A(a) =A0+ "-.. with Bi = 

"'" [~lni 
i . 

• . .  

The number of independant parameters is ~=l ni(ni+ 1)/2. 
We have shown theorem 3: 

Theorem 3. The versal deformation described in Theorem 2" is minimal. The 
number o f  independant parameters is ~,~= 1 ni(ni + 1)/2. 
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Using Theorem 3 we can strengthen our Theorem 2 in topoi: 

Theorem 4. Theorem 2 is the best spectral decomposition theorem we can get in 

topoi. We mean the fol lowing: By  Theorem 2 any symmetric matrix  A is similar to 

a matrix 

where the A i "$ are symmetric  square blocks. There is no hope, in the general case 

to show that the A i ' s  have some zero entries. 

3. Proof  of  the lemmas 

P r o o f  of  L e m m a  1. Let x =  £ , ~ x i a  i. Then Ix[=l  iff Eik=, a/2= 1 iff ( a l , . . . , a k ) ~  

S k-  i. We consider the cube C in /R k given by 

k 

C = U  t - l , l ]  i-I  
i=l 

× {-1 ,1}  × [ - 1 , 1 ]  k-i. 

C is 
/,rt 

C C U i =  

totally bounded. Therefore, given e>O, JYl,-'-,Ym, such that 
m 

I B (Y i '  e). Then S k-  1 C Ui= 1 B ( Y i / I  Yi[, e). If Yi = ( a i l , . . . ,  aik), we have 

S k - I ( X l , . . . , X k ) C  B ~ aOxj, e . 
i = 1  j=l 

P r o o f  of  Lemma 2. Induction on k. The case k = 1 follows from Lemma 1. We now 

suppose the lemma true for k and we consider Sk+l = {(xl, ... ,Xk+l)IXi 'Xj  =dij}. 
m 

Let e > 0. Sk is totally bounded. Therefore Jy~, ..., y--'m ~ Enk such Sk C Ui=~ B(Yii, e) 
(with the norm on Rnk). Let Yh = (Xhl, . . . ,  Xhk), h = 1, . . . ,  m, xhi ~ ~n. We consider 
the system of  linear equations Xh, k+ 1" Xn, j = O, j = 1, . . . ,  k. The k × n matrix of the 
system is 

1 B =  • and BBt=Ik .  

Lxh, kA 
Then 

] [ k [ : l =  E ]Bi,...ik[ 2, 
iL <...<i , 

where Bit...i, is the k ×  k submatrix of B defined by the columns i, ..... ik. So 

J i l , . . . , i  k such that 1/1/(~)< [Bi,...i~]<l. Using this submatrix we can find n - k  
linearly independent solutions Xh, k + l, l, . . . ,  Xh, k + I,,,- k, of the system. These can be 
orthonormalized, using the Gram-Schmidt  process. By Lemma 1, we can find linear 
combinations Yh, l . . . .  ,Yh, ph of these vectors such that Vy if Y.Xh, j=O for 
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j = 1, ..., k, then :Yr ~ I Y -  Yh, r I < e. We consider the vectors (xh, 1,---, Xh, k, Yh, k + l,j) • 
S k÷l, h= 1, . . . ,m ,  j =  1, . . . ,Ph. These vectors are denoted by .Pl,---,fis- Then, for 

any ~ = (xl, ... , Xk + l) • Sk + l, Yh ~ ~ = (xl, ... ,  Xk) • B(Yh, e), and we have Xk + l" Xh.i = 
e i with [eil<e for i = l , . . . , k .  We consider the system: Xk+l.Xh, i=ei, i = l , . . . , k ,  
]eil <e.  Since I ni,...i,[_ 1/(l~k), the solutions Xk+ l are not more distant than 
ell(z) from those of the system: Xk+! "Xh, i=O, i= 1, . . . ,k .  

Proof of Lemma 3. Let e > 0  and (Xl, . . . , X k )  , (Yl,- . . ,Yk)~Sk with Ixi-Yil<e/n. 
Suppose x = ~ , i ~ a i x  i a n d  y=~,i~laiYi w i t h  ~ i ~ l a 2 = l .  Then I x - Y l < ~  and 
Ixl = l y l  = 1. Further, 

IxAx t - yA yt l <_ IxAx t - yAxt  l + l y Z x  t - y h  yt l 

---[xt[ [(x-  y)Z l + l Y [ [ a ( x t -  yt)[ = 2 l ( x -  y )Z  [ 

<_2CA[x-Yl, where CA=(iffi, ~ jffi, ~ a2) 1/2 

t i 2 Proof of Lemma 4. Let A =(aij) and A'=(aij) be such that ~,~j(aij-aij) <e.  Let 
S = S k- l (x l , . . . ,  Xk). Let M =  maXx~s xAxt and M '  = maxx~s, xA 'x  t. ~rx • S 
[ M - x A x t l < e .  But [xAxt-xA'xtl<e. So M ' > M - 2 e .  In the same way 

M > M ' - 2 e .  By taking the minimum of all IM'-MI for all (Xl,- .- ,Xk)•Sk, we 
get IAk-,  l <2e. 

We now give the proof of  Fourman's theorem, since we use it later. It uses 
Newton's method in the following form. 

Lemma (Newton's method of approximation of zeroes). Let f :  C ~ C  be holomor- 
phic and Xo • C. Suppose that Yc, 2 such that: I f(x0)] < c/2A, and Vx, y • B(xo, c) 

1 1 
I f ( x ) - f ( y ) - f ' ( y ) ( x - y ) l <  ~ l x - y l  and If'(x)l 

Then Y~ • B(xo, c) such that f ( O  = O. 

Proof.  We define xn+l =Xn--f(xn)(f'(xn)) -1. By induction w e  show 
Ixn - xn- 1[ < c/2n (this implies Xn • B(Xo, c)) and I f(xn_ ,)l < c/2ne (same proof as 
classical proof). Then ~ = lim xn. 

Theorem (Fourman). Let p(x) • C[x] be a monic polynomial o f  degree n, such that 
Res(p ,p ' )  #= 0. Then p splits into linear factors. 

Proof. Res(p,p ') :~O = Yf, g: p f + p ' g =  1 (same as classical proof). Let R > 0  be 
such that p(x)=gO for Ixl <R/2 .  Let 
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M =  max (f(x), g(x)) and 
x e B(0, R) 

21 0 < 6 < 1 such that 

Vx, yeB(O,R)  ] x - y  1<6 = 

1 

4M 

[ p(x) - p(y)[ < e and 

I p ( x ) - p ( y ) - p ' ( y ) ( x -  y)[ < e I x -  yl .  

We must find Xo such that I p(Xo)]< 6e = 6/4M. 

aWr/>0, Vx, yen(O,R)  I x - y l<r t  = [p (x ) -p (y ) l<6e /2 .  
m 

B(0, R) is totally bounded: B(0, R) C ~i= i B(xi,  r / / 2 ) .  We have 

m 

A ( [p (x i ) l<&vtp (x i ) l>k&) .  
i = 1  

Using Liouville's theorem we see that one of the statements 

k 

A I p ( x i ) l < & A A  [p(xt)[>-}& 
j=  1 I*  b 

is valid, with at least one term Ip(xi) t< &.  We take Xo = x/; Then 

Vx, y e B(xo, 6) I P'(x)g(x)l = I 1 - p(x)f(x)] 

->11 -P(Xo)f(x)l - I f (x)(p(x)-p(Xo))l  

_ 1 - [  P(x0)I I / ( x ) [ -  [ f(x)l [P(x)-P(Xo)[ 

> I - ( 6 / 4 M ) M - M e >  I -¼ l _ l 4 - - 2 ,  

Ip'(x)tM> lp'(x)g(x)l>_½ = [p'(x)l>_ l /2M. 

We take ~. = 2M, c = 6 and we apply the previous lemma. 

Proof  of Lemma 5. By induction on the degree of p we show that p(x)~ ©[x] can 
be factorized as a product of separable polynomials. We then apply Fourman's  
theorem. Suppose the result true for any polynomial of  degree n and let 
p(x) = x  "+ l + alx" + ." + an+ 1- We consider Res(p ,p ' ) ,  the resultant of p and p ' .  

(1) If  R e s ( p , p ' ) ¢ 0 ,  then p is separable. 
(2) If  Res(p, p ' )  = 0, we use Euclid's algorithm to find the GCD of p and p ' ,  call 

it f .  Then p = ( p / f ) f ,  with p / f  separable and degf_<n. 

P roof  of Lemma 6. The proof of Lemma 5 gives us that any algebraic real number 
is the root of a separable polynomial p(x)e©[x] : p ( X ) = x n + a l X n - l + ' . ' + a n  . 

Then (a, ,=0 and a,,_~ ¢0)  or a , ,¢0 .  Hence p ( 8 ) = 0  implies R = 0  or X¢0.  
We now show that the algebraic numbers form a field. Let x~,y~ be two 

algebraic real numbers, respectively roots of p(x) and q(x) in ©[x], 
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p(x) =x" + a~x"-~ + - . .  + a , ,  = ( X - X l )  . . .  (x -x , ) ,  

q(x) : x m d- b lx  m- 1 + ... + bm = ( y _  yl)  "'" (Y -Ym)" 

Then x~ +y~ and Xl Y~ are respectively roots of 

n m n m 

r(x)= 1-I H ( x - x i - y y )  and s(x)= l I  1-[ ( x -x i y j ) .  
i=1  j=l i = l  j = l  

r(x) and s(x) are symmetric in x~,. . . ,  x n on one hand, and Yl , . . . ,Ym on the other. 
Using the symmetric function theorem, the proof  of which is constructive, and thus 

valid in a topos, we get that r(x), s(x)eQ[x].  Moreover, if Xl =~0 we can suppose 
an=#O (otherwise an =0 and we consider p/x) .  Then x -1 is a root of  t(x)= 
1 + a l x + t l 2 x 2 +  ... +an Xn. 

Proof of Lemma 7. [ 2 I - A [  =0 =~ '~ :~g l ,  " . ,Pn '~  P l ~ ' " < - ~ n  • The matrix l z i I - A  
can be row-reduced to an echelon matrix, using that algebraic numbers are com- 
parable and form a field. Thus we can find eigenvectors and the classical proof  can 
be used to show that the/zi's are real. If  we orthonormalize the eigenvectors we get 

I:l °1 A = S  t "'. S, 

Izn 

with S orthogonal. Then Q(x)=xAx t=  ~,in=llliYi 2. Using this final equality to 
calculate the Ai'S we get ]-/i " =  Ai. 
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